CaMKKβ Is Involved in AMP-Activated Protein Kinase Activation by Baicalin in LKB1 Deficient Cell Lines
نویسندگان
چکیده
AMP-activated protein kinase (AMPK) plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca(2+)/calmodulin-dependent protein kinase kinase-β (CaMKKβ). Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1). Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), although the maximal level of [Ca(2+)](i) is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca(2+) by EDTA and EGTA, or depletion of intracellular Ca(2+) stores by the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca(2+)/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin.
منابع مشابه
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.
AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence ind...
متن کاملAMP-Activated Protein Kinase Phosphatidylinositol Ether Lipid Analogues Induce
Loss of function of the tumor suppressor LKB1 occurs in 30% to 50% of lung adenocarcinomas. Because LKB1 activates AMP-activated protein kinase (AMPK), which can negatively regulate mTOR, AMPK activation might be desirable for cancer therapy. However, no known compounds activate AMPK independently of LKB1 in vivo , and the usefulness of activating AMPK in LKB1-mutant cancers is unknown. Here, w...
متن کاملRegulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملThe ubiquitin-associated domain of AMPK-related protein kinases allows LKB1-induced phosphorylation and activation.
The AMPK (AMP-activated protein kinase)-related protein kinase subfamily of the human kinome comprises 12 members closely related to the catalytic alpha1/alpha2 subunits of AMPK. The precise role of the AMPK-related kinases and their in vivo substrates is rather unclear at present, but some are involved in regulating cell polarity, whereas others appear to control cellular differentiation. Of t...
متن کاملLKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation.
The tumor suppressor LKB1 is an evolutionarily conserved serine/threonine kinase. In humans, LKB1 can be inactivated either by germ-line mutations resulting in Peutz-Jeghers syndrome or by somatic mutations causing predisposition to multiple sporadic cancers. LKB1 has wide-ranging functions involved in tumor suppression and cell homeostasis, including establishing cell polarity, setting energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012